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The head-on collision of twodark solitons is studied in the normal-dispersion regime near the zero-
dispersion point of a nonlinear single-mode optical fiber. Two different head-on collisions may actually occur.
One is that of two dark solitons, and the other one is that of a dark with an antidark soliton. The solitons
emerging from the collisions can preserve their original identities only to the second order. The phase shifts
due to the collisions show different signs, depending on the ratio of the second- to third-order dispersion
parameters of the system.@S1063-651X~96!10909-0#

PACS number~s!: 42.81.Dp, 42.65.2k

Although solitons arise in many areas of physics, single-
mode optical fibers are known to be the most convenient
quasi-one-dimensional systems to investigate dynamical
properties of solitons, including their generation, evolution,
and interaction. Moreover, potential applications, by using
soliton pulses as information carriers in optical communica-
tion systems, have attracted considerable attention in recent
years@1#. Hasegawa and Tappert@2# predicted that optical
pulses may propagate in single-mode fibers without broaden-
ing in the form of bright and dark solitons, for which the
nonlinear refractive index can compensate anomalous~nega-
tive! and normal~positive! group-velocity-dispersions, re-
spectively. Bright solitons in optical fibers were first ob-
served by Mollenauer, Stolen, and Gordon@3#, and their
interactions were studied both theoretically and experimen-
tally @4–8#. Bright soliton propagation over a 10 000-km dis-
tance has been achieved by using an Er-doped fiber amplifier
to compensate for fiber losses@9#. Dark solitons remained a
mathematical curiosity until several years ago, when tech-
niques for controlling both the phase and amplitude of sub-
picosecond pulses were applied in order to generate odd-
symmetry dark pulses that propagated unmistakably as
solitons @10#. Dark solitons have a number of interesting
properties; e.g., they can be generated without a threshold
condition in the pulse intensity similar to solitons of the
Korteweg–de Vries~KdV! equation, they are less affected
by losses or background fluctuations than bright solitons, and
they are stable near the zero-dispersion~ZD! point ~see, e.g.,
Kivshar @11#!. Recently, the~211!-dimensional dark soli-
tons, including dark-soliton strips and grids, optical vortex
solitons, and ring dark solitons, have also been studied both
theoretically and experimentally@12–14#. For optical com-
munications it is important to understand the nature of the
soliton interaction, because the interaction between closely
spaced solitons may lead to pulse attraction and subsequent
coalescence@15#. The interaction of dark solitons in the
framework of the integrable nonlinear Schro¨dinger ~NLS!
equation was first considered by Blow and Doran@16# and
Zhao and Bourkoff@17#. In Ref. @18#, Thurston and Weiner
reported numerical simulations that laid the groundwork for
possible experiments aimed at the observation of dark-
soliton collisions.

In optical fibers there are advantages to working near the
ZD point, where the second-order dispersion is zero, because
there the power required for creating bright solitons is sig-
nificantly low. Since exact analytical solutions describing
soliton propagation near the ZD point are not available, nu-
merical and perturbative methods have been used. For dark
solitons, Kivshar@19#, and Kivshar and Afanasjev@20# ana-
lyzed the nonlinear dynamics of dark solitons near the ZD
point by using a connection between the NLS equation and
the KdV equation. They proved the existence of a new type
of optical soliton,antidark solitons, i.e., dark solitons with
the reverse sign in the amplitude. They pointed out that it is
possible to observe a head-on collision between dark and
antidark solitons in optical fibers in the normal dispersion
regime near the ZD point. Numerically, they showed that
such a head-on collision looks elastic for small-amplitude
dark solitons.

In this paper, weanalytically investigate the head-on col-
lisions of dark solitons near the ZD point in optical fibers by
using the Poincare´-Lighthill-Kuo ~PLK! method@21,22#. We
discuss the types of collisions and explicitly provide the
postcollision phase shifts of each soliton together with the
corrections of amplitude and phase functions of the optical
pulses.

Using the slowly varying envelope approximation@1#, the
dimensionless envelope amplitudeu(x,t) of the electric field
in the neighborhood of the ZD point in single-mode optical
fibers satisfies the modified NLS equation

iux2autt12uuu2u2 ibuttt50, ~1!

where the subscriptsx and t represent partial derivatives.
Time t in the reference frame moving with the group veloc-
ity is measured in units of the pulse durationT, and the
coordinatex along a fiber is measured in units ofT/uk(1)u.
The parametera5k(2)/(2Tuk(1)u) denotes the dimensionless
second-order dispersion andb5k(3)/(6T2uk(1)u) represents
the dimensionless third-order dispersion of the fiber. Herek
is the propagation wave number, andk( j )5] j k/]v j ~j
51,2,3!.
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Whenb50 anda.0, Eq.~1! is completely integrable and
the one-soliton dark pulse takes the form

u~x,t !5u0
~l2 in!21expZ

11expZ
exp~2iu0

2x!, ~2!

where u0 is the amplitude of constant-wave~CW! back-
ground, l5A12n2(0<n2<1) and Z52nu0(t2t0
22lAau0x)/Aa ~t0 is an arbitrary constant!. Whenn561,
Eq. ~2! describes the fundamental dark soliton
u5u0 tanh@u0(t2t0)/Aa#exp(2iu 0

2x). For n2!1 it becomes
thegray dark soliton

u5u0@11a0~x,t !#exp@2iu0
2x1 if0~x,t !#, ~3!

a0~x,t !52 1
2n2sech12Z, ~4!

f0~x,t !5n@ tanh12Z21#, ~5!

Z52nu0@ t2t07u0Aa~22n2!x#/Aa. ~6!

Gray dark solitons can propagate with opposite directions,
hence a head-on collision between two gray solitons is pos-
sible.

Using

u~x,t !5u0@11a~x,t !#exp@2iu0
2x1 if~x,t !#, ~7!

Eq. ~1! becomes

ax2a@~11a!f tt12atf t#

2b@attt23atf t
223~11a!f tf tt#50, ~8!

fx24u0
2a1afx1a@att2~11a!f t

2#22u0
2~3a21a3!

2b@~11a!f ttt13atf tt13attf t2~11a!f t
3#50.

~9!

The system~8! and ~9! can be reduced to the KdV equa-
tion under the weak nonlinearity and weak dispersion ap-
proximation@19#. Thus for the overtaking collision between
the gray dark solitons in optical fibers, one can use the KdV
equation derived in Ref.@19# and the inverse scattering trans-
form @23# to obtain overtaking colliding effects of the soli-
tons. However, for the head-on collision between the dark
solitons, we must use some asymptotic expansion to solve
the original equation of motion, Eq.~1!, or equivalently, Eqs.
~8! and ~9!.

We use the PLK method@21,22# to investigate the
head-on collision between two dark solitons in optical fibers
near the ZD point. Suppose that two dark solitons are far
apart and heading toward each other. After some time they
interact, following a collision, and then depart. Anticipating
that the collision will result in phase-shifted trajectories@22#
we set

j5e~ t2cRx!1e2P~0!~h!1e4P~1!~j,h!1••• , ~10!

h5e~ t1cLx!1e2Q~0!~j !1e4Q~1!~j,h!1••• , ~11!

wheree is the smallness and ordering parameter. The right-
and left-running wave speeds 1/cR , 1/cL are to be related to
the amplitudes of the waves. The functionsP( j ) and Q( j )

~j50,1,2, . . .! are to be determined in the process of our
perturbational solution of Eqs.~8! and ~9!. These functions
are introduced for the purpose of making uniformly valid
asymptotic approximations~i.e., eliminating secular terms!.
One of the advantages of the PLK method over other ones is
that it allows one to explicitly calculate postcollision effects
such as phase shifts due to the head-on collision.

Using Eqs.~10! and ~11! we obtain the transformation
between derivatives as

]x5e~2cR]j1cL]h!1e3~cLPh
~0!]j2cRQj

~0!]h!1••• ,
~12!

] t5e~]j1]h!1e3~Ph
~0!]j1Qj

~0!]h!1••• . ~13!

Introducing the asymptotic expansion

a5e2~a~0!1e2a~1!1••• !, f5e~f~0!1e2f~1!1••• !,
~14!

cR5c1e2R~1!1e4R~2!1••• ,

cL5c1e2L ~1!1e4L ~2!1••• , ~15!

and substituting Eqs.~12!–~15! into Eqs. ~8! and ~9!, one
obtains a hierarchy of linear, inhomogeneous equations for
a( j ) andf( j ) ~j50,1, . . .!. To leading order the solution is

a~0!5 f ~0!~j !1g~0!~h!, ~16!

f~0!52
c

a E
1`

j

f ~0!~j8!dj81
c

a E
2`

h
g~0!~h8!dh8,

~17!

with c52u0Aa. The two functionsf ~0! and g~0! are to be
determined. Thus to leading order, we have two waves, one
of them, f ~0!~j!, is traveling to the right, and the other one,
g~0!~h!, is traveling to the left. The lower limits of integra-
tions in Eq.~17! have been chosen to make the initial phases
~before collision! of solitonsf ~0!~j! andg~0!~h! equal to zero.

In the next order, we have the equations fora~1! andf~1!.
The solvability conditions fora~1! andf~1! yield

2 1
3l1

1Afj
~0!1l1

1 f ~0! f j
~0!1l2

1 f jjj
~0! 50, ~18!

2 1
3l1

2Bgh
~0!1l1

2g~0!gh
~0!1l2

2ghhh
~0! 50, ~19!

Ph
~0!5S 121

3bc

4a2 Dgh
~0! , ~20!

Qj
~0!5S 122

3bc

4a2 D f j
~0! , ~21!

with

R~1!5cS 11
bc

2a2DA, L ~1!5cS 12
bc

2a2DB, ~22!

and
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l1
153cS 11

bc

2a2D , l2
152S b1

a2

2cD , ~23!

l1
2523cS 12

bc

2a2D , l2
252S b2

a2

2cD , ~24!

whereA andB are the constants related to the amplitudes of
the solitons. Equations~18! and~19! are just the KdV equa-
tion in the reference frame ofj and h, respectively. The
soliton solutions are

f ~0!~j !5A sech2F S l1
1A

12l2
1D 1/2jG ~right-running soliton!,

~25!

g~0!~h!5B sech2F S l1
2B

12l2
2D 1/2hG ~ left-running soliton!,

~26!

with sgn(A)5sgn~l1
1l2

1! and sgn(B)5sgn~l1
2l2

2!. Then
from Eqs.~20! and ~21! we obtain

P~0!~h!5S 121
3bc

4a2 D E
2`

h
g~0!~h8!dh8

5S 121
3bc

4a2 D S 12l2
2B

l1
2 D 1/2

3H tanhF S l1
2B

12l2
2D 1/2hG11J , ~27!

Q~0!~j !5S 122
3bc

4a2 D E
1`

j

f ~0!~j8!dj8

5S 122
3bc

4a2 D S 12l2
1A

l1
1 D 1/2

3H tanhF S l1
1A

12l2
1D 1/2jG21J . ~28!

From Eqs.~25!–~28!, we can obtain the particular expres-
sions ofa~1! andf~1!, but they are not needed here. Thus the
solutions up toO~e4! order are

a~x,t !5e2@A sechuA~j!1B sechuB~h!#

1e4H l1
1

3c F11
a

l2
1c S a1

bc

a D GA2sech2uA~j!

2
l1

2

3c F12
a

l2
2c S a2

bc

a D GB2sech2uB~h!

2
1

2 F31
l1

1a

l2
1c2 S a1

bc

a D GA2sech4uA~j!

2
1

2 F31
l1

2a

l2
2c2 S a2

bc

a D GB2sech4B~h!

1 f ~1!~j !1g~1!~h!J 1O~e6!, ~29!

f~x,t !5eH 2
c

a S 12l2
1A

l1
1 D 1/2@ tanhuA~j!21#

1
c

a S 12l2
2B

l1
2 D 1/2@ tanhuB~h!21#J

1e3H 2
c

a E
1`

j

f ~1!~j8!dj8

1
c

a E
2`

h
g~1!~h8!dh8J 1O~e5!, ~30!

j5e~ t2cRx!1e2S 121
3bc

4a2 D S 12l2
2B

l1
2 D 1/2@ tanhuB~h!11#

1O~e4!, ~31!

h5e~ t1cLx!1e2S 122
3bc

4a2 D S 12l2
1A

l1
1 D 1/2@ tanhuA~j!21#

1O~e4!, ~32!

cR5c1e2 13l1
1A1O~e4!, cL5c2e2 13l1

2B1O~e4!,
~33!

with

uA~j!5S l1
1A

12l2
1D 1/2j, uB~h!5S l1

2B

12l2
2D 1/2h, ~34!

where f ~1! andg~1! are two functions to be determined in the
next order.

The phase shifts following the head-on collision of two
dark solitons can be obtained. Let us assume that the soliton
f ~0! ~denoted byA! and solitong~0! ~denoted byB! are far
enough from each other at the initial time~t52`!; i.e., soli-
ton A is at j50 andh52`, andB is at h50 andj51`,
respectively. After collision~t51`!, A is far to the right of
B; i.e., A is at j50, h51`, andB is at h50 andj52`.
Therefore, from Eqs.~31! and ~32!, we obtain the phase
shifts ofA andB, DA andDB :

DA5e~ t2cRx!uj50, h51`2e~ t2cRx!uj50, h52`

52e2S 11
3bc

2a2 D S 12l2
2B

l1
2 D 1/2, ~35!

DB5e~ t1cLx!uh50, j52`2e~ t1cLx!uh50, j51`

5e2S 12
3bc

2a2 D S 12l2
1A

l1
1 D 1/2. ~36!

As the crucial parameter isG[a3/2/~bu0!, which is the
ratio of the second-order to third-order dispersion of the op-
tical fiber, we come to the following conclusions:

~i! Soliton A, Eq. ~25!, is always a dark~concave-up!
soliton traveling to the right. SolitonB, Eq. ~26!, traveling to
the left, is dark whenG is less than 1 or larger than 4. How-
ever,B becomes an antidark~raised! soliton if 1,G,4.

~ii ! When G is less than 1 or larger than 4, there is a
head-on collision of twodark solitons A and B. When
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1,G,4, we have a head-on collision between adark soliton
(A) and anantidark soliton (B).

~iii ! The phase shift of solitonA due to the head-on col-
lision is always negative. For solitonB, its phase shift is
negative whenG,3 but positive otherwise.

~iv! To the second order, head-on collisions are elastic but
they become inelastic if higher-order corrections are in-
cluded, in agreement with the numerical results reported by
Kivshar and Afanasjev@20#.

Needless to say,G is an important quantity to be con-
trolled when experimentally studying the interaction of dark
solitons in normal-dispersion regime near the ZD point in
optical fibers. Noticing that in the standard single-mode
silica-glass fiber, the ZD point is at wavelengthlZD
51.27 mm. Near lZD , k~2!'93@1.272l0~mm!#310226

~sec2/m!, k(3)'2.33Al0(mm)[l0(mm)21]310240

(sec3/m), n2~Kerr coefficient!51.2310222 ~m/V!2 @24#. Di-
mensional electric field in Eq.~1! is defined byE52(uk(1)uc/
Tv0n2)

1/2u, wherec is the speed of light in vacuum and
v052pc/l0 ~l0 is the wavelength of carrier wave!. From the

preceding results we can see that the experimental observa-
tion of the head-on collision between dark solitons near the
ZD point will require a peak electric fieldE0 around
~7/G!3107 ~V/m! if we take lZD2l050.01 mm and
E0'~2/G!3106 ~V/m! when lZD2l050.001 mm. On the
other hand, as suggested in Ref.@18#, in order to achieve an
observable phase shift in experiment, the blackness param-
eter of the dark pulse, controlled bye2 @if A andB are fixed,
see Eq.~29!# in our case, cannot be too small.
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