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Head-on collisions of dark solitons near the zero-dispersion point in optical fibers
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The head-on collision of twalark solitons is studied in the normal-dispersion regime near the zero-
dispersion point of a nonlinear single-mode optical fiber. Two different head-on collisions may actually occur.
One is that of two dark solitons, and the other one is that of a dark with an antidark soliton. The solitons
emerging from the collisions can preserve their original identities only to the second order. The phase shifts
due to the collisions show different signs, depending on the ratio of the second- to third-order dispersion
parameters of the systefi51063-651X96)10909-0

PACS numbes): 42.81.Dp, 42.65-k

Although solitons arise in many areas of physics, single- In optical fibers there are advantages to working near the
mode optical fibers are known to be the most convenienZD point, where the second-order dispersion is zero, because
quasi-one-dimensional systems to investigate dynamicahere the power required for creating bright solitons is sig-
properties of solitons, including their generation, evolution,nificantly low. Since exact analytical solutions describing
and interaction. Moreover, potential applications, by usingsoliton propagation near the ZD point are not available, nu-
soliton pulses as information carriers in optical communicamerical and perturbative methods have been used. For dark
tion systems, have attracted considerable attention in recegpjitons, Kivshaf19], and Kivshar and Afanasjei20] ana-
years[1]. Hasegawa and TappeZ] predicted that optical |yzeq the nonlinear dynamics of dark solitons near the ZD
pulses may propagate in single-mode fibers without broadenﬁoint by using a connection between the NLS equation and

ing i_n the form Qf b_right and dark solitons, for which the the KdV equation. They proved the existence of a new type
nonlinear refractive index can compensate anomalnega- of optical soliton,antidark solitons i.e., dark solitons with

tive) and normal(positive group-velocity-dispersions, re- .o erga sign in the amplitude. They pointed out that it is

spectively. Bright solitons in optical fibers were first ob- ; e
served by Mollenauer, Stolen, and Gordf81, and their poss_5|ble to 'obser_ve a .head'-on chI|S|on between_ dark'and
y ’ ! antidark solitons in optical fibers in the normal dispersion

interactions were studied both theoretically and experimen=""" ) .
tally [4—8]. Bright soliton propagation over a 10 000-km dis- €9ime near the ZD point. Numerically, they showed that

tance has been achieved by using an Er-doped fiber amplifi§ich @ head-on collision looks elastic for small-amplitude
to compensate for fiber lossgg]. Dark solitons remained a dark solitons. . . _

mathematical curiosity until several years ago, when tech- In this paper, weanalytically investigate the head-on col-
nigues for controlling both the phase and amplitude of sublisions of dark solitons near the ZD point in optical fibers by
picosecond pulses were applied in order to generate oddising the Poincareighthill-Kuo (PLK) method[21,22. We
symmetry dark pulses that propagated unmistakably adiscuss the types of collisions and explicitly provide the
solitons [10]. Dark solitons have a number of interesting POostcollision phase shifts of each soliton together with the
properties; e.g., they can be generated without a threshofPrrections of amplitude and phase functions of the optical
condition in the pulse intensity similar to solitons of the Pulses. . o
Korteweg—de VriegKdV) equation, they are less affected  Using the slowly varying envelope approximatid, the

by losses or background fluctuations than bright solitons, andimensionless envelope amplitudgx,t) of the electric field
they are stable near the zero-dispergicb) point (see, e.g., N the neighborhood of the ZD point in single-mode optical
Kivshar [11]). Recently, the(2+1)-dimensional dark soli- fibers satisfies the modified NLS equation

tons, including dark-soliton strips and grids, optical vortex

solitons, and ring dark solitons, have also been studied both _— 2, i _

theoretically and experimentalli2—14. For optical com- Uy ety + 2]ulu =i B =0, @
munications it is important to understand the nature of the

soliton interaction, because the interaction between closelwhere the subscriptg andt represent partial derivatives.
spaced solitons may lead to pulse attraction and subsequehimet in the reference frame moving with the group veloc-
coalescencd15]. The interaction of dark solitons in the ity is measured in units of the pulse duratidn and the
framework of the integrable nonlinear Sctioger (NLS)  coordinatex along a fiber is measured in units ®f|k()|.
equation was first considered by Blow and Dofd6] and  The parameterr=k®/(2T|k?)|) denotes the dimensionless
Zhao and Bourkoff17]. In Ref.[18], Thurston and Weiner second-order dispersion ang=k®)/(6T?|kV)|) represents
reported numerical simulations that laid the groundwork forthe dimensionless third-order dispersion of the fiber. Here
possible experiments aimed at the observation of darkis the propagation wave number, and)=dk/ow (j
soliton collisions. =1,2,3.
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WhenB=0 anda>0, Eq.(1) is completely integrable and wheree is the smallness and ordering parameter. The right-
the one-soliton dark pulse takes the form and left-running wave speedscd/, 1/c, are to be related to
the amplitudes of the waves. The functioR§) and QU
(j=0,1,2 ... are to be determined in the process of our
perturbational solution of Eq$8) and (9). These functions
are introduced for the purpose of making uniformly valid
where u, is the amplitude of constant-wav&€W) back- ~asymptotic approximationé.e., eliminating secular terms
ground, A=\1—-1%0=<1?<1) and Z=2vuy(t—t, One_of the advantages 0}‘ t_he PLK method over qther ones is
— 2\ Jaux)/\a (tg is an arbitrary constantWheny==+1,  thatit allows one to explicitly calculate postcollision effects
Eq. (2) describes the fundamental dark soliton ~Such as phase shifts due to the head-on collision.
u:uotanP[uo(t—tO)/\/Z]exp(Zu%x). For 12<1 it becomes Using Egs.(10) and (11) we obtain the transformation

(A—iv)2+exZ

u(x,t)=Uo 1+expZ

exp(2iugx), 2)

the gray dark soliton between derivatives as
- 3 0) 5 _ (0)
u=ug[1+ag(x,t)Jexg2iudx+igo(x,)], (3 Ix=€(=Crdgt CLI,) + €(CLP, 9= CrRQyd,) + i
ag(x,t)=—3v’sechZ, (4) h=€(dg+d,)+E(PYa+QPa,)+-- . (19
bo(x,t) = v[tanhtZ— 1], (5) Introducing the asymptotic expansion
a=e2(a0+e2aW+--+), ¢=e(dp O+ 2V +--),
Z=2vug[t—toT Ugve(2— v?)x]/a. (6) (14)
Gray dark solitons can propagate with opposite directions, cr=c+ R+ R +... |
hence a head-on collision between two gray solitons is pos-
sible. cL=Cc+eLW+ L@ ... (15)
Using
and substituting Eqs(12)—(15) into Egs.(8) and (9), one
u(x,t)=ug[ 1+a(x,t)Jexd 2iudx+ip(x,t)], (7)  obtains a hierarchy of linear, inhomogeneous equations for
al) and ¢\ (j=0,1, ..). To leading order the solution is
Eq. (1) becomes
& @ a®=10(¢)+gO(7), (16
ay—a[(1+a)py+2a;¢y]
2 o__% ¢ f(O)(gf)dgf_,_E 7 O(p"Hdy'
= Blaw—3arp; —3(1+a) ¢y ] =0, tS) ¢ = a Jix o | 9 \m)an,
2 2 202,21 43 (a7
¢y—4ugatad,tala,— (1+a)d;]—2ug(3a+a’)
. with c=2ug/a. The two functionsf® and g'® are to be
—BL(1+a) py t+3aidy+ 3ayd— (1+a)d;]1=0. determined. Thus to leading order, we have two waves, one

@ of them, f©(¢), is traveling to the right, and the other one,
g9(#), is traveling to the left. The lower limits of integra-
The system8) and (9) can be reduced to the KdV equa- tions in Eg.(17) have been chosen to make the initial phases
tion under the weak nonlinearity and weak dispersion ap{before collision of solitonsf®(£ andg'®(») equal to zero.
proximation[19]. Thus for the overtaking collision between  In the next order, we have the equations 4" and ¢
the gray dark solitons in optical fibers, one can use the KdvThe solvability conditions foa™ and ¢'*' yield
equation derived in Ref19] and the inverse scattering trans-

form [23] to obtain overtaking colliding effects of the soli- _%)‘IAf(&O)JF)‘If(o)féo)“”‘;f(g?f:o’ (18)

tons. However, for the head-on collision between the dark Ly () sy — n(0)a(0) 4y —(0)

solitons, we must use some asymptotic expansion to solve —3M Bg, +N 070, TN 05,,=0, 19

the original equation of motion, E@l), or equivalently, Egs.

(8) and(9). PO _ 1, 3B o (20)
We use the PLK method21,22 to investigate the n 2 4a? 9y

head-on collision between two dark solitons in optical fibers

near the ZD point. Suppose that two dark solitons are far 0 1 3Bc 0)

apart and heading toward each other. After some time they Qe =|57 7,2/fe (21)

interact, following a collision, and then depart. Anticipating
that the collision will result in phase-shifted trajectorie®]  with
we set

Bc Bc

= elt—cpx) + PO (n) + EPI(E m) 4+, (10 SR KR o [YNTEEL S SIS

n=e(t+c x)+ Q&) +e* QM (¢, p)+---, (1)  and
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N Be ?
)\1 =3c 1+EZ , B+ (23)
_ Bc _ a?
)\1:—3C(1—E>, )\2:—( —z), (24)

whereA andB are the constants related to the amplitudes of
the solitons. Equation€l8) and(19) are just the KdV equa-
tion in the reference frame of and », respectively. The

soliton solutions are

+ 1/2
fO¢)=A sech & (right-running soliton,
12>\2
(29
—B 1/2
g(© : . )
(7)=B sech (12}\2> n| (left-running soliton,

(26)

with sgn(A)=sgriA{\3) and sgnB)=sgr(A\;\;). Then
from Eqgs.(20) and(21) we obtain

3
O )= (2 4B)flg(°)(77’)d77’

(1 3pc)(12;B|?
2722\

Ny
- 1/2
xltan}‘{ 121}\2_) n|+1¢, (27
3 é
Q(O)(g) (2 #) f+mf(0)(§l)d§/
(1 3Bc)[12;A|M
|20 4?2
)\+A 1/2
x[tan{(lzl}\—;) ¢ —1]. (29)

From Egs.(25)—(28), we can obtain the particular expres-
sions ofa® and ¢, but they are not needed here. Thus the

solutions up taO(e* order are

a(x,t)=€’[ A sect(&)+B sechig(7)]

+E4[3_£ e a+B— A’secltoa(£)
_ % { - % ( a— —) B2?secR6g( )
_% ;\22:2 a+— | |A’sectO,(£)

_ % [ ;\\21_:2 (a— —) B2sechg(7)

+f(1)(§)+g(1)(77)] +0(€%), (29
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+

c [12AJA
ot [ 152

1/2

[tanhda(§) — 1]

c (122,B\
+— % [tani¥g(7)—1]
c (¢
+é —Eme(D(g')dg'
+§flg(1)(77’)d77’]+0(65), (30
L1 3pc|(12; B\
E=e(t—crx)t+e §+W W [tanhgg(7)+1]
+0(eY), (312)
1 3pc\(125A\
n= (t+CLX)+€ 2 HZ T [tanh9A(§)—1]
+0(eY), (32)
Cr=C+e?3N]A+0(€%), c =c—e*3A;B+0(€Y),
(33
with
)\+A 1/2 ~ )\IB 1/2
Oa(&)= (12}\2) 3 93(”%(@) 7, (34

wheref® andg® are two functions to be determined in the
next order.

The phase shifts following the head-on collision of two
dark solitons can be obtained. Let us assume that the soliton
f© (denoted byA) and solitong® (denoted byB) are far
enough from each other at the initial tinfte= —); i.e., soli-
ton A is at é&=0 and y=—=, andB is at =0 and &=+,
respectively. After collisior(t=+), A is far to the right of
B; i.e.,, Ais at {é=0, =+, andB is at =0 and é=—x.
Therefore, from Eqs(31) and (32), we obtain the phase
shifts of A andB, A, andAg:

Ap= E(t_CRX)|§:0, n=+oo E(t—CRX)|§:o, p=—o

3[30)(12)\2_8)1/2

2
+
2a° N

= — €

(39

AB: €(t+CLX)|77=O, f=—o0 G(t‘l‘C|_X)|77:0Y f=+o

38c) (12,5 A\ M2
262 1——2 I .
2a N

As the crucial parameter iE=a*%(Bu), which is the
ratio of the second-order to third-order dispersion of the op-
tical fiber, we come to the following conclusions:

(i) Soliton A, Eq. (25), is always a darkconcave-up
soliton traveling to the right. SolitoB, Eq.(26), traveling to
the left, is dark when" is less than 1 or larger than 4. How-
ever,B becomes an antidarkaised soliton if 1<I'<4.

(i) WhenT is less than 1 or larger than 4, there is a
head-on collision of twodark solitons A and B. When

(36)
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1<I'<4, we have a head-on collision betweedaak soliton  preceding results we can see that the experimental observa-
(A) and anantidark soliton (B). tion of the head-on collision between dark solitons near the

(iii) The phase shift of solitos due to the head-on col- zZD point will require a peak electric fieldE, around
lision is always negative. For solitoB, its phase shift is (7/)x10" (V/m) if we take A\,p—\,=0.01 um and
negative wherl’<3 but positive otherwise. Eq~(2)x10° (V/Im) when \zp—\o=0.001 um. On the

(iv) To the second order, head-on collisions are elastic bugther hand, as suggested in Réf8], in order to achieve an
they become inelastic if higher-order corrections are in-gpservable phase shift in experiment, the blackness param-
cluded, in agreement with the numerical results reported byter of the dark pulse, controlled e [if A andB are fixed

Kivshar and AfanasjejZZO]. . . see Eq.(29)] in our case, cannot be too small.
Needless to sayl’ is an important quantity to be con-

trolled when experimentally studying the interaction of dark  The first author wishes to express his appreciation to Pro-
solitons in normal-dispersion regime near the ZD point infessor P. Fulde for the warm hospitality received at the Max-
optical fibers. Noticing that in the standard single-modePlanck-Institut fn Physik Komplexer Systeme in Dresden,

silica-glass fiber, the ZD point is at waveleng where part of this work was carried out. The authors thank
=1.27 um. Near \yp, k@=~9X[1.27-Ay(um)]X1072® M. Bar, S. Flach, A. A. Nepomnyashchy, J. Pontes, S. Q.
(seé/m), k(®=~2.3x N\ o(um)[No(em)—1]x10°4°  Shen and X. Q. Wang for useful discussions. The research

(seé/m), ny(Kerr coefficienj=1.2x10"2* (m/V)? [24]. Di-  was partially supported by DGICY{Spain under Grant No.
mensional electric field in Eq1) is defined byE=2(|k(1)|c/ 93-081, by Fundacin“Ramon Areces” (Spain and through
Twon,)Yu, wherec is the speed of light in vacuum and a sabbatical program of the Spanish Ministry of Education
wy=2mc/\g (\g is the wavelength of carrier waue=rom the  and Science.
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